Temperature Control for Research and Industry

Model 410 Manual

For Serial Number

Warranty

J-KEM Scientific, Inc. warrants this unit to be free of defects in materials and workmanship and to give satisfactory service for a period of 12 months from date of purchase. If the unit should malfunction, it must be returned to the factory for evaluation. If the unit is found to be defective upon examination by J-KEM, it will be repaired or replaced at no charge. However, this WARRANTY is VOID if the unit shows evidence of having been tampered with or shows evidence of being damaged as a result of excessive current, heat, moisture, vibration, corrosive materials, or misuse. This WARRANTY is VOID if devices other than those specified in Section 3.2 are powered by the controller. Components which wear or are damaged by misuse are not warranted. This includes contact points, fuses and solid state relays.

THERE ARE NO WARRANTIES EXCEPT AS STATED HEREIN. THERE ARE NO OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND OF FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL J-KEM SCIENTIFIC, INC. BE LIABLE FOR CONSEQUENTIAL, INCIDENTAL OR SPECIAL DAMAGES. THE BUYER'S SOLE REMEDY FOR ANY BREACH OF THIS AGREEMENT BY J-KEM SCIENTIFIC, INC. OR ANY BREACH OF ANY WARRANTY BY J-KEM SCIENTIFIC, INC. SHALL NOT EXCEED THE PURCHASE PRICE PAID BY THE PURCHASER TO J-KEM SCIENTIFIC, INC. FOR THE UNIT OR UNITS OF EQUIPMENT DIRECTLY AFFECTED BY SUCH BREACH.

Service

J-KEM Scientific maintains its own service facility and technical staff to service all parts of the controller, usually in 24 hours. For service, contact:

J-KEM Scientific, Inc.
858 Hodiamont Ave.
St. Louis, MO 63112 USA
(314) 863-5536

FAX (314) 863-6070
Web site: http://www.jkem.com
E-Mail: jkem911@jkem.com
This manual contains parameters specific to this temperature controller.
When calling with a technical question, please have the controller's serial number available.

You've purchased the most versatile controller available to the research community. We're confident it can regulate ANY heating/cooling situation you'll ever encounter. If the information in this manual isn't adequate to make your application work, call our Engineering Department for assistance.

- With J-KEM's patented Microtune circuitry -

INDEX

SECTION PAGE

1. QUICK OPERATING INSTRUCTIONS 4
KEM-NET DATA LOGGING AND CONTROL SOFTWARE 5
2. ADJUSTING THE CONTROLLER FOR STABLE CONTROL WITH DIFFERENT HEATERS 6
2.1 What is Tuning 6
2.2 Autotuning Procedure 7
2.3 Tuning for Heating Mantles and Oil Baths: Special Cases 9
2.4 Sensor Placement 9
3. OPERATIONS GUIDE 10
3.1 Front Panel Description 10
3.2 Heater Restrictions 11
3.3 Ramp-to-Setpoint \& Soak Feature 11
3.4 Temperature Sensor Input 15
3.5 Power Reduction Circuit 15
3.6 Effect of Power Setting on Heating Profile 17
3.7 Changing between PID and ON/OFF Operating Modes 19
3.8 Troubleshooting 20
3.9 Do's and Don'ts When Using Your Controller 21
3.10 Loop Break Alarm Feature 21
4. APPLICATION NOTES 22
4.1 Theory of How the Controller Works - Simply 22
4.2 Controlling the Heating Mantle Temperature Directly 24
4.3 Automatic Storage of Min/Max Temperatures 25
4.4 How to Set Up a Reaction With Your Temperature Controller. 26
APPENDIX 30
I. Safety Considerations and Accurate Temperature Control 30
II. Resetting the Controller to Original Factory Settings 31

Section 1: Quick Operating Instructions

The three steps below are the basics of using your temperature controller. The User's Manual is a reference that explains the controller more fully as well as some of its more sophisticated features. It's recommended that new users unfamiliar with process controllers read the entire manual carefully. Users unfamiliar with J-KEM's temperature controllers should particularly read the safety notices in Appendix I.

For a primer on how to set up a reaction with your temperature controller: See Section 4.4

To use heaters other than heating mantles and oil baths:
For polymer synthesis, atypical, expensive, or safety critical reactions:

See Section 2
See Appendix I.

1 Place the thermocouple in the solution being heated. Place at least the first $1 / 4$ " of the thermocouple directly in the solution being heated. If the controller is used with an oil bath, the probe should be placed in the oil, if with a flask in a heating mantle, then place the probe in the solution inside the flask. When the probe is in the oil of an oil bath, the oil should be stirred for uniform heat distribution since the oil heats very rapidly. Placing the oil bath on top of a running magnetic stirrer with a stirring bar inside the oil works well. Thermocouples can be bent without harming them. If you're heating a corrosive liquid, use a Teflon coated thermocouple. If you are heating a sealed reaction, see Section 4.2.

2 Set the power level switch to the correct power setting.

Oil Baths - Set the power level switch to the voltage setting equal to the voltage rating of the oil bath being used (i.e., if a 40 volt bath is being used, set the power level switch to the 40 V setting).
Heating Mantles - Set the power level switch to the volume of solution being heated, not the size of the flask. The power level switch can be thought of as a solid state variac. Volume ranges are printed above this switch as a guide to select the correct power level since it's

TIP: Because the power switch acts like a variac, if the reaction is heating too slowly or you need more power (e.g., heating to high temperatures), give the heater more power by turning the power level up one setting. If the reaction needs less power than normal(e.g., heating to

A power	is equivalent to
setting of.....	a variac setting of:
$1-10 \mathrm{ml}$	3%
$10-100 \mathrm{ml}$	10%
$50-500 \mathrm{ml}$	25%
$300 \mathrm{ml}-2 \mathrm{~L}$	50%
$>2 \mathrm{~L}$	100%

easier to guess the volume being heated than the appropriate "percent power" to apply to a heater. 'Heat Off' turns off the heater so the controller displays temperature only. Section 3.5 should be read by all new users.

3 Enter the setpoint (i.e., the desired temperature). Hold in the * button and simultaneously press the UP key to increase or the DOWN key to decrease the setpoint. The setpoint can be seen at anytime by holding in the * button, the setpoint appears as a blinking number in the display.

KEM-Net Data Logging and Control Software

The USB port on the back panel of the controller is an interface to J-KEM's KEM-Net Software. KEM-Net is free and can be downloaded from J-KEM's web site at www.jkem.com.

KEM-Net provides remote control of up to 8 controllers, graphical presentations of each digital meter and time \& temperature plots. Highlights of KEM-Net include:

* GLP and GMP compliant data logging
* Runs a 12 step temperature ramp
* Logging of Time and Temperature
* Logging of \% Power for Exo and Endotherm detection
* Program KEM-IO Actions (Section 3.10)
* Over- \& Under-temperature alarm functions.

KEM-Net also includes a virtual comm port driver that provides a simple ASCII interface to operate and data \log the controller from LabView or other software packages.

New Features:

GMP compliant data logging
Exo and Enotherm monitoring

KEM-IO Remote Control of Laboratory Equipment based on Time and Temperature

KEM-IO is an optional feature that allows the controller to respond to inputs from instruments, like a vacuum sensor or a hood door switch, and also to control instruments, like stirrers and chillers based on reaction temperature. KEM-IO automates programs as simple as:

Heat my reaction to 80° C, then turn on my peristaltic pump to add reagents.
or as sophisticated as:
Turn on my stirrer, then ramp my reaction from $25^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ if 45 minutes, hold for 2 hours, then turn off heating. When the reaction cools to $50^{\circ} \mathrm{C}$, turn off the stirrer. If at any point the reaction exotherms and heats above $110^{\circ} \mathrm{C}$, turn on my chiller and keep it on until I manually reset the system.

Contact J-KEM for additional information.

Section 2: Adjusting The Controller For Stable Control With Different Heaters

2.1 What is Tuning. The controller's most powerful feature is its ability to regulate virtually any heater with stable temperature control. For stable control the controller requires two things; (1) the controller must be set to the correct power level (see Section 3.5) and, (2) that it must be tuned to the heater being used. Tuning is the process that matches the control characteristics of the controller to the heating characteristics of the heater. The controller is said to be tuned to the heater when its memory is programmed with values telling it how fast the heater warms up, cools off, and how efficiently it transfers heat. For example, consider the difference between a heat lamp and a hot plate. When electricity is applied to a heat lamp it begins to heat instantaneously, and when it's turned off it stops heating instantaneously. In contrast, a hot plate may take several minutes to begin heating when electricity is applied and even longer to start cooling when electricity is turned off. Your controller can regulate both a heat lamp and a hot plate to $0.1^{\circ} \mathrm{C}$. But, to do this it must be programmed with the time constants describing how fast the heater heats when electricity is turned on and how fast it begins to cool when it's turned off. These time constants are called the tuning parameters.

Every type of heater has its own unique set of tuning parameters. For the controller to heat with stability, it must have programmed with the tuning parameters for the heater currently being used. Prior to shipment, tuning parameters were programmed into the controller that maximize heating performance for laboratory heating mantles and oil baths since these are the most common heaters used in research. Tuning is regulated by 5 of the temperature meter's user programmable functions. The correct value for these 5 functions can be calculated and loaded by the user manually, or the controller can do it automatically with its autotune feature

When Should the Controller be Tuned? If the controller is tuned to one type of heater, heating mantles for example, any size heating mantle can be used without the need to retune. When changing from heating mantles to a different type of heater, an oven for example, the controller should be tuned with values describing the oven's heating characteristics. The effect of tuning is seen below. When the controller is tuned for heating mantles, using it with any size heating mantle yields stable temperature control (Plot 1), but poor control results when the same tuning parameters are used with an oven (Plot 2, Curve 1). However, after tuning the controller to the oven, stable temperature control results (Plot 2, Curve 2).

Plot 1

Plot 2

It's important to understand that this controller isn't a simple ON/OFF type controller (i.e. ON when below the set point, OFF when above [though it can be made to work this way, see Section 3.7]). Rather it's a predictive controller. Based on the shape (slope) of the heating curve, the controller predicts (calculates) the percent of power to apply to the heater now to control the shape of the heating curve minutes in advance. The importance of the tuning parameters is that they are constants in the equation the temperature meter uses to perform its predictive calculations. If the temperature meter is programmed with tuning parameters that incorrectly describe the heater being used, poor temperature control will result. But, when the correct values are loaded, temperature regulation of $\pm 0.1^{\circ}$ is typically achieved.

Manual Tuning. Manual tuning is when the values of the 5 tuning parameters are determined manually then entered into the temperature meter via the push buttons on the front of the controller. Experienced users might prefer to manually tune the controller since this allows customization of the heating process.
Autotune. Autotune is a feature built into the temperature meter that automatically calculates the tuning parameters (i.e. delay times, heating efficiency, etc.) for any type of heater. After the autotune procedure is complete and the tuning parameters are determined, the controller loads them into its memory for current and future use. Heating mantles and oil baths are special cases and are covered in a separate paragraph (Section 2.3).

2.2 Autotuning Procedure.

This procedure is not recommended for heating mantles (see Section 2.3).

1. Set the equipment up in the exact configuration it will be used. For example, to tune to a vacuum oven, place the thermocouple in the room temperature oven and plug the oven into the controller. If the oven (or heater) has its own thermostat or power control, turn it to its highest setting.
2. Set the controller to the appropriate power level (see Section 3.6). Make sure the timer circuit is set to ON (i.e., the timer window displays On; see Section 3.5). Turn the controller and heater on, and enter the desired set point temperature. If the set point isn't at least $30^{\circ} \mathrm{C}$ above ambient, skip this procedure and go to the next procedure, "Autotuning the Controller for Very Fine Control"
3. Press and hold in both the \uparrow and \downarrow buttons (for 3 seconds) on the front of the temperature meter until the word "tunE" appears in the display then release both buttons.
4. Press the \uparrow button (5 times) until "CyC.t" appears in the display (if you go past this setting, press the \downarrow button until you get back to it).
5. First, hold in the '*' button, while holding in the ' $*$ ' button press the \downarrow button. Continue to hold both buttons in until the display reads "A --", or "A \#\#" where "\#\#" is some number.
6. Release the '*' button and press the \downarrow button until "tunE" once again appears in the display.
7. Press and hold the '*' button and "tunE" changes to "off" to indicate that autotune is off.
8. While holding in the '*' button, press the \uparrow button to change the display to "on", then release both buttons.
9. Press and hold both the \uparrow and $\boldsymbol{\downarrow}$ buttons (for 3 seconds) until the temperature appears in the display. The controller is now in its autotune mode. While in autotune the display alternates between "tunE" and the process temperature. When the autotune sequence is done (this may take in excess of an hour) the controller stops displaying "tunE" and only displays the process temperature. [To abort autotune manually, repeat steps 3,8 and 9 except in step 8 press the \downarrow button until "off" is displayed]. If during the process of autotuning the message "Tune Fail" appears, see the paragraph at the end of section 2.2.

The autotune sequence.

During autotune the controller heats to 75% of the set point temperature where it oscillates for several cycles before loading the new tuning parameters. After the tuning parameters are loaded it heats to the set point temperature. Tuning below the set point prevents any damage that might occur from overheating.

Autotuning the Controller for Very Fine Control.

This procedure is not recommended for heating mantles (see Section 2.3).
In the majority of cases, the normal autotune procedure results in stable temperature control with any heater. A second version of the autotune routine is available and can be used when the heater is 1) at the set point, 2) is being tuned close to room temperature, or 3) for very fine control in demanding situations. If stable temperature control doesn't result after performing the first autotune routine, the procedure below should be performed. Before performing the 'fine tune' autotune procedure, if possible, perform the autotune procedure on the preceding page.

1. Set the equipment up in the exact configuration it will be used. If the heater has its own thermostat or power controls, turn it to its highest setting. With this procedure it's not necessary for the equipment to start at room temperature. This procedure can be performed at any time and any temperature.
2. Set the controller to the appropriate power level (see Section 3.6). Make sure the timer circuit is set to ON (i.e., the timer window displays On; see Section 3.5). Turn the controller and heater on, then enter the desired set point temperature.
3. Press and hold in both the \uparrow and \downarrow buttons (for 3 seconds) on the front of the temperature meter until the word "tunE" appears in the display then release both buttons.
4. Press the \uparrow button (5 times) until "CyC.t" appears in the display (if you go past this setting, press the \downarrow button until you get back to it).
5. First hold in the '*' button, while holding in the '*' button press the \downarrow button. Continue to hold both buttons in until the display reads "A --", or "A \#\#" where "\#\#" is some number.
6. Release the '*' button and press the \downarrow button until "tunE" once again appears in the display.
7. Press and hold the '*' button and "tunE" changes to "off" to indicate that autotune is off.
8. While holding in the '*' button, press the \uparrow button to change the display to "At.SP", then release both buttons.
9. Press and hold both the $\boldsymbol{\uparrow}$ and $\boldsymbol{\downarrow}$ buttons (≈ 3 seconds) until the temperature appears in the display. The controller is now in its autotune mode. While in autotune the display alternates between "tunE" (for autotune) and the process temperature. When the autotune sequence is done (this may take in excess of an hour) the controller stops displaying "tunE" and only displays the process temperature. [To abort autotune manually, repeat steps 3,8 and 9 except in step 8 press the \downarrow button until "off" is displayed].

Autotune Errors. The autotune routine can fail for several reasons. If it fails, the controller displays the error message "tunE" "FAiL". To remove this message turn the controller off for 10 seconds. Try the procedure titled "Autotuning the Controller for Very Fine Control" above. If autotune fails again, call and discuss your application with one of our engineers. A common problem when tuning at high temperatures or with large volumes is for the heater to be underpowered. A more powerful heater may be needed (contact J-KEM for assistance).

2.3 Tuning for Heating Mantles and Oil Baths: A Special Case. This section gives special

 consideration to heating mantles and oil baths, since they're the most common heaters used in research. Every heating mantle size has its own optimum set of tuning parameters and if you wanted, the controller could be tuned (or autotuned) every time a different size was used. However, this is cumbersome and is also unnecessary. Factory tests show that there's a set of tuning parameters that delivers good performance for all heating mantle sizes. These tuning parameters were loaded into the controller at the factory prior to your receiving it. If you're using a heating mantle and none of the parameters have been changed or the controller hasn't been autotuned since you've received it, you're ready to go. If the tuning parameters have been changed or the controller has been autotuned and you want to go back to using heating mantles, perform the procedure below to manually load the tuning parameters for heating mantles.
Procedure 1. Perform when using heating mantles with round bottomed flasks.

[This procedure takes about 2 minutes to perform]

1	Press and hold in both the $\boldsymbol{\downarrow}$ and \uparrow keys on the front of the temperature meter until the word "tunE" appears in the display, then release both keys.
2	Press the \uparrow key once and the word "bAnd" will appear in the display. First hold in the '*' key, then while holding in the '*' key press the \downarrow or $\boldsymbol{\uparrow}$ key until the value " 10 " appears, then let go of all the keys.
3	Press the \uparrow key once and the word "int.t" will appear in the display. First hold in the '*' key, then while holding in the '*' key press the \downarrow or $\boldsymbol{\uparrow}$ key until the value " 10 " appears, then let go of all the keys.
4	Press the \uparrow key once and the word "dEr.t" will appear in the display. First hold in the '*' key, then while holding in the '*' key press the \downarrow or \uparrow key until the value " 50 ", then let go of all the keys.
5	Press the \uparrow key once and the word "dAC" will appear in the display. First hold in the '*' key, then while holding in the '*' key press the \downarrow or \uparrow key until the value " 3.0 ", then let go of all the keys.
6	Press the \uparrow key once and the word "CyC.t" will appear in the display. First hold in the '*' key, then while holding in the '*' key press the \downarrow or \uparrow key until the value " 30 ", then let go of all the keys.
7	Press and hold in both the \downarrow and \uparrow keys until the temperature appears in the display, then release both keys.

2.4 Sensor Placement. Placement of the sensor is basically common sense. The sensor should be positioned to sense the average temperature of the medium being heated. That means the thermocouple should be shielded from direct exposure to the heater but not so distant that a rise in temperature isn't sensed by the controller within a reasonable period of time. Several examples follow that show the type of consideration that should be given to sensor placement.

Use With:	
Solutions	Place the sensor in the solution. Stir vigorously so that heat is homogeneously mixed throughout the solution.
HPLC column heated with a heating tape	Tape a thin wire thermocouple directly to the HPLC column. Place several layers of paper over the thermocouple to insulate it from the heating tape (the thermocouple should sense the column temperature, not the heater temperature). Wrap the HPLC column completely with heating tape.
Oven	The thermocouple needs to be shielded from transient hot and cold air currents. Don't place the thermocouple near the heating coil or an air vent. A small thermocouple (1/16" or r $1 / 8$ " thermocouple) that responds rapidly to changes in air temperature is better than a larger one.

Section 3: Operations Guide

3.1 Front Panel Description.

Figure 1

1. Temperature Display. Shows temperature of the process as the default display. Shows set point temperature (i.e. desired temperature) when '*' button is pressed.
2. Control Key. When pressed, the display shows the set point temperature. To decrease or increase the set point, press the \downarrow key (3) or \uparrow key (4), while simultaneously depressing the control key. The set point appears as a blinking number in the display.
3. Lowers set point when ' $*$ ' button (2) is simultaneously pressed.
4. Raises set point when '*' button (2) is simultaneously pressed.
5. Temperature Sensor Input. Use the same type of sensor probe as the sensor plug installed on the controller (see Section 3.4). The correct sensor type will have the same color plug as the thermocouple input (5) on the front of the controller.
6. Power Outlet. Plug only 120 VAC devices into this outlet (see Section 3.2).
7. Controller On/Off switch. For maximum display accuracy, turn on the controller 30 minutes prior to use. WARNING: Due to the nature of solid state relays, a small amount of output power ($7.5 \mathrm{~mA} @ 120 \mathrm{VAC} ; 0.9$ watts) is present at outlet 6 even when the controller is turned off. Take appropriate precautions to avoid electrical shock.
8. Power Reduction Circuit. Controls the computer that limits the maximum power delivered to the heater. See Sections 3.5 and 4.1.
9. USB Communications Port.
3.2 Heater Restrictions. The controller delivers 10 amps of current as modulated pulses of AC voltages of varying peak voltages based on the front panel voltage setting. Only resistive heaters like oil baths, heating mantles, lamps should be used with the Model 410. Do not use variacs or valves of any sort with the Model 410. For questions of heater suitability, please contact J-KEM.
3.3 Ramp-to-Setpoint \& Soak Feature. A new feature of J-KEM's controllers called 'Ramp-ToSetpoint' allows you to enter a specific heating rate (e.g., heat to $120^{\circ} \mathrm{C}$ at a rate of $5^{\circ} \mathrm{C} /$ Hour), a second feature called 'Soak' then lets you specify how long to stay at that temperature before turning off.

Examples of Program Ramps

The controller is shipped with the Ramp-to-Setpoint feature OFF, the user must specifically turn Ramp-to-Setpoint ON. When Ramp-to-Setpoint is OFF, the controller heats to the entered setpoint at the fastest rate possible. When Ramp-to-Setpoint is ON, the controller heats at the user entered ramp rate. The Ramp-to-Setpoint feature and its associated parameters are turned on and set in the controller's programming mode. The parameters of importance are:

SPrr SetPoint Ramp Rate. Allowable Values: $\mathbf{0}$ to 9990 deg/Hr.

This specifies the desired rate of heating (cooling). Note, this parameter specifies the desired rate of heating (cooling), but in cases of extremely high ramp rates the reaction will not actually heat faster than the power of the heater will allow.

SPrn SetPoint Ramp Run. Allowable Values: ON, OFF, Hold

This parameter turns the Ramp-to-Setpoint feature ON or OFF. During an active run, if this parameter is set to 'Hold', the setpoint ramp stops and holds at its' current value. This continues until the parameter is set to ON or OFF. When set to OFF, the values in SetPoint Ramp Rate and Soak Time are ignored.

SoAK Soak Time. Allowable Values: "- -", 0 to 1440 min.

This specifies the amount of time to soak at the setpoint after the setpoint temperature ramp is complete. A setting of "- -" causes the controller to remain at the final setpoint indefinitely. A numeric value causes the controller to stay at the setpoint for the entered time and then turn power to the heater off after the time expires.

Important Points to Know

1. While the Ramp-to-Setpoint feature is activated, the display alternates between the current reaction temperature and the word "SPr" to indicate that a "SetPoint Ramp" is active.
2. If this controller is equipped with a digital 100 -hour timer, the digital timer and the Ramp-toSetpoint feature are completely independent of each other. For example, if the digital timer is set to turn heating OFF after 5 hours, heating is turned off even if a ramp step is in progress. Likewise, if a Soak time turns heating off after 3 hours and the digital timer is set to turn heating off after 10 hours, the digital timer has no effect since the expired Soak time already has turned heating off.
3. Once the Ramp-to-Setpoint feature is activated in programming mode, it remains on until it's deactivated in programming mode. The Ramp-to-Setpoint feature remains activated even when power is turned off, and then turned back on.
4. Setting a ramp rate in the digital controller does not guarantee that the reaction itself will ramp at the entered value, since the rate of heating is dependent on the power of the heater. Setting a ramp rate in the controller only guarantees that the controller's setpoint will be changed at the entered rate. For the reaction temperature to increase temperature at the specified rate, the heater must have sufficient power to heat at the entered rate. This is a critically important point, the user must understand that the electronic setpoint in the controller will ramp at the entered rate, but the controller cannot force a heater to heat a reaction faster than it's capable of doing. For example, see the plots below.

Plot 1 - This plot uses a heating mantle to ramp temperature in reaction from 20 to 80 C in 60 minutes. The reaction temperature closely matches the setpoint of the controller because heating mantles have enough power to heat a typical reaction at the modest heating rate of 1 degree per minute.

Plot 2 - In this example, the ramp rate is set to $600 \mathrm{C} /$ hour, or 10 C per minute. The controller ramps the setpoint at the requested rate, but the reaction temperature does not match the ramp, because the heater does not have enough power to heat the reaction as such a high rate. Every time the reaction temperature does not match the entered ramp rate, it's because the heater has insufficient power to heat at the requested rate. The only solution to this situation is 1) use a more powerful heater, or 2) lower the ramp rate to a value that does not exceed the heaters maximum heating rate. The controller has no influence over a heater that has insufficient power to heat at the entered ramp rate.

Cooling Ramps

Cooling ramps, when the reaction temperature is allowed to cool at a user set rate can also be created. What's important to remember about cooling ramps, is that your controller has no capability to actively cool a reaction, the only way for a reaction to cool is to radiate heat to the atmosphere. So, a researcher must never set a cooling rate faster than the reaction can naturally lose heat to the air around it.

Cooling ramps can be very helpful in processes like crystallizations where cooling ramps tend to be very slow, in this case, the solution temperature often matches the requested cooling rate very closely.

Activating \& Programming the Ramp-to-Setpoint Feature

tunE bAnd int.t der.t dAC CyC.t oFSt SP.Lk SPrr SPrn Soak SEt.2 bnd.2 CyC. 2

This is the order of controller parameters on Level 1 of the controller, when the controller is placed into programming mode (Step 1) below.

1. \quad Before starting a new ramp, the controller must have the ramping feature turned off. Verify that the ramping feature is turned off by entering programming mode and checking verifying this before continuing.
To enter programming mode, press and hold in both the $\boldsymbol{\triangle}$ and $\boldsymbol{\nabla}$ keys on the front of the temperature meter until the word "tunE" appears in the display, then release both keys.
Now press the $\boldsymbol{\Delta}$ key (9 times) until the word "SPrn" appears in the display, then release all keys. The display on the controller will alternate between "SPrn" and the word ON or OFF. If the word OFF is displayed, then exit programming mode and proceed to Step 2. If the word ON is displayed, then hold in the '*' key and press the $\boldsymbol{\nabla}$ key once to change the display from ON to OFF, then release all keys. To exit programming mode, press and hold in both the $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ keys until the temperature appears in the display, then release both keys.
2. Note the current reaction temperature displayed by the controller. Enter this temperature into the controller as the new setpoint. For example, if the current reaction temperature is 22.5 C , then set the controller's setpoint to 22.5 C .

3 3. | Press and hold in both the $\mathbf{\Delta}$ and $\boldsymbol{\nabla}$ keys on the front of the temperature meter until the word "tunE" appears in the display, |
| :--- |
| then release both keys. |

| 4. | Press the $\boldsymbol{\Delta}$ key (8 times) until the word "SPrr" appears in the display. |
| :---: | :---: | :---: |

This is where the ramp rate in units of degrees/hour is entered. First hold in the '*' key, then while holding in the *' key press the $\boldsymbol{\nabla}$ or $\boldsymbol{\Delta}$ key until the desired ramp rate appears in the display, then let go of all the keys. Units are in degrees/hour, so if you want a ramp rate of $2 \mathrm{C} / \mathrm{min}$, then enter a value of 120 .

5.	Press the $\boldsymbol{\Delta}$ key once and the word "SPrn" will appear in the display. This function turns the ramping feature ON or OFF. First hold in the '*' key, then while holding in the *' key press the $\boldsymbol{\nabla}$ or $\boldsymbol{\Delta}$ key until the display shows ON (to start a ramp) or OFF (to terminate a ramp), then let go of all the keys.

$6 . \quad$ Press the $\mathbf{\Delta}$ key once and the word "SoaK" will appear in the display.
This is where the soak time is entered in units of minutes. A soak time of ' -- ' means to 'soak forever' (this setting is one below ' 0 '). First hold in the '*' key, then while holding in the *' key press the $\boldsymbol{\nabla}$ or $\mathbf{\Delta}$ key until the desired time appears in the display, then let go of all the keys. If a soak time is set, the controller display will alternate between showing the current reaction temperature and the word "StoP" when the soak time has expired to indicate that power has been turned off.
7. To exit programming mode, press and hold in both the $\boldsymbol{\nabla}$ and $\boldsymbol{\Delta}$ keys until the temperature appears in the display, then release both keys.
8. Temperature ramping is now enabled in the controller. Any time a new setpoint is entered into the controller, the controller ramps from the current displayed temperature to the new setpoint at the rate entered.
For example, if your controller is currently displaying the sensed temperature at o25.0 C, then entering a new setpoint of 100.0 C , will cause the controller to ramp from 25 to 100 C at the ramp rate entered in step 4 . The controller can ramp to setpoints higher than the current temperature (heating ramp) and to setpoints lower than the current temperature (cooling ramp).

Deactivating the Ramp-to-Setpoint Feature

1.	Press and hold in both the $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ keys on the front of the temperature meter until the word "tunE" appears in the display, then release both keys.
2.	Press the $\boldsymbol{\Delta}$ key (9 times) until the word "SPrn" appears in the display. This function turns the ramping feature ON and OFF. First hold in the ' $*$ ' key, then while holding in the *' key press the $\boldsymbol{\nabla}$ or $\boldsymbol{\Delta}$ key until OFF appears in the display, then let go of all the keys.
3.	To exit programming mode, press and hold in both the $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ keys until the temperature appears in the display, then release both keys.

3.4 Temperature Sensor Input. Every controller is fitted with a specific type of thermocouple input and can only be used with a thermocouple of the same type. For the correct temperature to be displayed, the thermocouple type must match the receptacle type on the front of the controller (Figure 1; \# 5). All thermocouples are color coded to show their type (Blue = type T; Yellow = type K; Black = type J). The color of the thermocouple plug must match the color of the receptacle on the front of the controller. If the thermocouple is broken or becomes unplugged, the error message "inPt" "FAiL" blinks in the temperature meter display and the controller stops heating.
3.5 Power Reduction Circuit. This circuit (8) is the interface to J-KEM's patented power control computer which limits the maximum output power delivered by the controller. It determines whether the controller heats at a very low [(10V) 1-10 mL], low [(20V) $10-100 \mathrm{~mL}]$, intermediate [(40V) $50-500 \mathrm{~mL}$], medium [(60V) $300 \mathrm{~mL}-2 \mathrm{~L}$], or high [(110V) $>2 \mathrm{~L}$] power level.
The power reduction circuit acts as a solid state variac. This circuit has an additional setting: "Heat Off" which, when selected, turns heating off and allows the controller to act as a digital thermometer. The table to the right shows the maximum output power from the controller to the heater depending on the position of the power switch. The correct setting for this switch is the setting that supplies adequate power for the heater to heat to the set point in a reasonable period of time while at the same time not overpowering it.

Heating Liquids. Each power level is associated with a volume range which acts as a guide when heating solutions with heating mantles. When solutions are heated with heating mantles set the power switch to the range that includes the volume of solution being heated [Note: this switch is set to the volume of solution, not the size of the flask]. For example to heat 250 ml of toluene to $80^{\circ} \mathrm{C}$ in a 1 L round bottomed

Front Panel Volume Range	Approx. \% of Full Power
$1-10 \mathrm{~mL}$	3
$10-100 \mathrm{~mL}$	10
$50-500 \mathrm{~mL}$	25
$300 \mathrm{ml}-2 \mathrm{~L}$	50
$\geq 2 \mathrm{~L}$	100

flask choose the third power setting ($50-500 \mathrm{ml}$) since the solution volume falls within this range. There are situations when a power level other than that indicated on the front panel should be used:

Example	Power Setting	Explanation
80 ml toluene 100 ml flask 100 ml heating mantle $\mathrm{SP}=80^{\circ} \mathrm{C}$	$50-500 \mathrm{ml}$ $(25 \%$ power)	Organic solvents heated to $\approx 50-110^{\circ} \mathrm{C}$ are set to the volume range on the front panel. When choosing between 2 power settings (ie. 80 ml also falls within both the $10-100 \mathrm{ml}$ range and the $50-500 \mathrm{ml}$ range) choose the higher setting.
80 ml collidine 100 ml flask 100 ml heating mantle $\mathrm{SP}=170^{\circ} \mathrm{C}$	$300 \mathrm{ml}-2 \mathrm{~L}$ $(50 \%$ power)	Even though the solvent volume is less than the range of this power setting, it should be used because high temperatures require additional power.

80 ml water 100 ml flask 100 ml heating mantle $\mathrm{SP}=80^{\circ} \mathrm{C}$	$\begin{aligned} & 300 \mathrm{ml}-2 \mathrm{~L} \\ & (50 \% \text { power }) \end{aligned}$	While the setting 50-500 ml would work, since the heat capacity of water is twice that of a typical organic solvent ($1 \mathrm{cal} / \mathrm{g} /{ }^{\mathrm{O}} \mathrm{K}$), a higher power setting can be used to compensate for the higher heat capacity.
125 ml toluene 1 L flask 1 L heating mantle $\mathrm{SP}=80^{\circ} \mathrm{C}$	10-100 ml (10\% power)	When the heating mantle size is substantially larger ($\geq 5 \mathrm{X}$) than the volume being heated (i.e. the heating mantle has excess heating capacity for the volume being heated), a lower power setting gives better control.
150 ml toluene 250 ml flask 250 ml heating mantle $\mathrm{SP}=35^{\circ} \mathrm{C}$	$10-100 \mathrm{ml}$ (10\% power)	Even though the solvent volume isn't included in this power setting, it should be used because low temperatures are better regulated with less power.

Avoid switching between power levels while the controller is heating. Specifically, do not initially set the controller on a high power level to rapidly heat the solution, then decrease the power level to the correct setting as the solution approaches the set point. Changing power levels doesn't damage the controller, but it will reduce its heating performance.

Heating Oil Baths. Set the power level switch to the voltage position that equals the voltage rating of the bath. You should set the power level switch one voltage setting lower than the rating of the bath if heating to temperatures below $60^{\circ} \mathrm{C}$. For example, to heat a bath rated at 40 volts to $45^{\circ} \mathrm{C}$, set the power level switch one setting below the 40 volt setting (i.e., set to the 20 volt setting).

Heating Equipment. Two factors need to be considered when heating equipment (ovens, hot plates, furnaces, HPLC columns, etc.); (1) placement of the temperature sensor (Section 2.4) and, (2) the appropriate power setting. The best guide to the correct power setting for various pieces of equipment is the researcher's experience. If your best guess is that the equipment needs $1 / 3$ full power to heat to the set point, set the power switch on the $300 \mathrm{ml}-2 \mathrm{~L}$ setting (i.e., 50% power, it's usually better to have too much power rather than too little). If the heater heats too slow, increase the power (to the $>2 \mathrm{~L}$ setting), if it heats too fast or has excessive overshoot, decrease the power (to the $50-500 \mathrm{ml}$ setting). If the amount of power seems to be adequate, but the heater doesn't heat with stability, the controller probably needs to be tuned (see Section 2). Section 3.6 shows the type of performance you should expect from the controller with different pieces of equipment.
3.6 Effect of Power Setting on Heating Profile.

The following graphs show the effect of selected power levels on heating performance in a variety of situations. Each example contains 1 optimal and 1 or 2 less optimal settings demonstrating use of the power reduction circuit.

Graph 1

This graph shows typical heating profiles for a laboratory oven and an HPLC column. In the example of the oven the heating curves for 2 different power levels are shown. The $50-500 \mathrm{ml}$ setting is the appropriate amount of power to heat to $75^{\circ} \mathrm{C}$ and thus results in a smooth heating curve. The $>2 \mathrm{~L}$ power setting is too much power and results in oscillation around the set point.

Graph 2

This graph shows the affect of different power settings when heating liquids with heating mantles. The 10 100 ml setting (10% power) is underpowered and results in slow heating. The 300 ml -2 L setting (50% power) is too much power and results in sporadic control. The controller adapts to a wide range of power settings. In this example the power is varied by a factor of 5 X , nevertheless, reasonable control is maintained in each case.

Graph 3

Another factor affecting the choice of power setting is the set point temperature. For set points near room temperature a low power level is adequate. For average temperatures (50-100 ${ }^{\circ}$) the volumes printed on the front of the controller are a good guide. For high temperatures, the next higher power setting might be needed to supply the heater with additional power.

The power reduction circuit limits the total amount of power delivered to the heater. In this sense it works like a variac and can be used like one. If the heater isn't getting enough power, turn the power level up one notch, if it's getting too much power, turn it down.
3.7 Changing Between PID and ON/OFF Operating Modes. The controller can heat in either of 2 operating modes, PID (Proportional, Integral, Derivative) or ON/OFF mode. The difference between them is the way power is supplied to the heater.
In ON/OFF mode (the simplest heating mode), the controller is ON when it's below the set point and OFF when above. The disadvantage of this mode is a large over shoot of the set point $\left(5-30^{\circ}\right)$ on initial warm up and oscillation of temperature around the set point thereafter. The reason for the overshoot is because the heater turns off only after crossing the set point and until the heater cools down the temperature continues
 to rise. This method works well for heaters that transfer heat rapidly (such as heat lamps), it's acceptable for heaters such as heating mantles ($\approx 5^{\circ}$ overshoot), but it's terrible for heaters that transfer heat slowly (vacuum ovens, heating blocks, etc.).

In PID mode the controller monitors the
 shape of the heating curve during initial warm up and decreases power to the heater before the set point is reached so that the solution reaches the set point with minimal over shoot. [Notice that the heater turns off for varying periods of time before the set point temperature is reached]. The second feature of PID mode is that it adjusts the percent of time the heater is on so that the set point is maintained precisely.
The advantage of PID mode is that it delivers stable temperature control with any heater from heat lamps to vacuum ovens. The disadvantage is that the controller must be properly tuned to the heater being used, whereas ON/OFF mode requires no tuning. Since both heating modes have their advantages (simplicity vs. accuracy), instructions to change the controller to ON/OFF mode are given below (though PID mode will probably give better results 95% of the time). The controller can be set back to PID mode by following Procedure 1 in Section 2.3.

1. Press and hold in both the $\boldsymbol{\downarrow}$ and $\boldsymbol{\uparrow}$ keys on the front of the temperature meter until the word "tunE" appears in the display, then let go of the buttons.
2. Press \downarrow until the word "CyC.t" appears in the display.
3. While holding in the ' j ' key, press the \uparrow key until the word "on.of" appears in the display. NOTE: if the display shows the letter " A " when the ' j ' keys is held in, press the \downarrow key until "on.of" is in the display, then let go of all the keys.
4. Press the \uparrow key until the word "bAnd" appears in the display. While holding in the ' j ' key, press the \uparrow key until the value " 0.1 " appears in the display, then let go of all the keys.
5. Press and hold in both the \downarrow and \uparrow keys on the front of the controller until the temperature is displayed, then release both keys.

Procedure to change controller to ON/OFF mode

[^0]
3.8 Troubleshooting.

Problem	Cause	Corrective Action
Large over shoot of the set point (> 3°) during initial warm-up or unstable temperature control.	Output power level is set too high.	Set the output power level to a lower setting (see Section 3.5).
	Controller is not tuned for process being heated.	Tune the controller as outlined in Section 2.
The process heats too slowly.	Output power level is set too low.	Increase the output power level to the next higher setting (Section 3.5).
	The heater doesn't have enough power.	Replace with a more powerful heater. For assistance contact JKEM.
The controller does not come on.	Internal 2 amp fuse has blown.	Not user serviceable. Have qualified electrician replace.
	Circuit breaker on back has tripped.	Allow to cool, then reset circuit breaker.
The controller comes on, but does not heat.	The heater is broken.	To verify that the controller is functioning properly, place the power level switch on the $>2 \mathrm{~L}$ setting and enter a set point of 100° C. Plug a light into the outlet of the controller, then wait 1 minute. If the light comes on the controller is working properly.
Controller blinks: "inPt" "FAiL" "-AL-" "-SPr-"	The temperature sensor is unplugged, excessively corroded or broken.	Clean or replace broken sensor.
	The process temperature is hotter than the alarm temperature.	Correct the over temperature condition.
	This indicates that a setpoint ramp rate program in effect.	See Section 3.3
"PArk"	Controller has been placed in "Park" mode.	1. Hold in both the $\boldsymbol{\downarrow}$ and $\boldsymbol{\uparrow}$ keys on the front of the J-KEM temperature meter until "tunE" appears in the display. 2. First hold in the " j " key, then while holding in the " j " key press the \uparrow key until "oFF" appears. 3. Hold in the $\boldsymbol{\downarrow}$ and $\boldsymbol{\uparrow}$ keys until the temperature appears in the display.
"tunE" "FAiL"	Autotune routine failed.	Turn off controller for 10 seconds. See Section 2.2.
Displayed temperature is incorrect. [Note: Types 'K' \& 'J' Thermocouples display negative temperatures, but are not calibrated for them]	The controller has not warmed-up.	The display temperature reads low when the controller is first turned on, but will self-correct as it warms up. The controller can be used immediately since it will warm up during the initial stages of heating.
	Wrong type of thermocouple is plugged into controller.	Thermocouples are color coded. Thermocouple plug and thermocouple receptacle must be the same color (see Section 3.4).
	Corroded thermocouple connections.	Clean plug on thermocouple and receptacle on controller with sandpaper or steel wool.
	Corroded thermocouple.	If the temperature-measuring end of the thermocouple is corroded, discard thermocouple.

Displayed temperature is incorrect. [Note: Types 'K' \& 'J' Thermocouples display negative temperatures, but are not calibrated for them]	Temperature display offset needed.	To enter a controller display offset: 1. Turn on controller. Allow to warm up for 30 minutes. 2. Record displayed temperature. 3. Press both the \downarrow and \uparrow keys on the front of the temperature meter until "tunE" appears, then let go of the keys. 4. Press the \uparrow key until "LEVL" appears. 5. First hold in the " j " key, then while holding in the " j " key press the \downarrow key until " 3 " is showing in the display, then let go of all keys. 6. Press the \downarrow key until "ZEro" is showing in the display. 7. Note the current display offset (this is the number blinking in the display). 8. Calculate the new offset temperature using the equation: 9. First hold in the " j " key, then while holding in the " j " key press the $\boldsymbol{\downarrow}$ or $\boldsymbol{\uparrow}$ keys until the new offset temperature is showing, then let go of all the keys. 10. Press the \downarrow and $\boldsymbol{\uparrow}$ keys until the temperature is displayed.

3.9 Do's and Don'ts When Using Your Controller. The controller, heater and thermocouple form a closed loop feedback system (see Fig. 2 in Section 4.1). When the controller is connected to a heater, the feedback loop should not be broken at any point.

Don't	remove either the thermocouple or heater from the solution without setting the power level to the "Heat Off' position. As the thermocouple cools the controller turns the heater on. Since this heat is never fed back to the thermocouple it heats continuously.
Don't	use the controller to regulate an exothermic process. The controller has no capacity for cooling. If an exotherm is expected, it must be controlled in another way.
Do	use an appropriate size flask and heater for the volume being heated. Use the smallest flask and heating mantle that accommodates the reaction. This ensures that the heating power of the heating mantle closely matches the volume being heated. This also allows the solution to radiate excess heat to minimize temperature overshoots.
Do	place the thermocouple directly in the solution. Place at least the first 1/4" of the thermocouple directly into the solution. If a corrosive mixture is heated, use a coated-coated thermocouple (or use the external thermocouple method; Section 4.2).
Do	avoid exposure of the controller to corrosive gases and liquids. The atmosphere of a research hood is corrosive to all electronics. Place the controller outside the hood away from corrosive gases.

3.10 Optional Loop Break Alarm Feature. An optional feature for any controller is the addition of a Loop Break Alarm. A loop break alarm (LBA) guards against two mistakes than can result in devastating heating accidents. The first scenario is when a user sets up a reaction, enters the desired setpoint, and then walks away leaving the thermocouple sitting on the lab bench and not placing it in the heated solution. The second scenario is when a reaction is unmonitored and either the thermocouple falls out of solution, or the flask breaks resulting in the thermocouple falling out of the flask. In all of these cases, since the thermocouple is still measuring a legitimate temperature (i.e., room temperature) the controllers never detects a heating error and continues to heat. Since the temperature of the thermocouple doesn't change as power is applied to the heater, the controller will eventually heat at full power resulting in a runaway heated reaction.
The loop break alarm feature detects when power is being applied to the heater but the temperature of the thermocouple does not increase. After a certain period of time if the thermocouple doesn't increase in temperature by 2.5 C , an error is declared and power is removed from the heater avoiding a heating accident. Contact J-KEM for more information.

Section 4: Application Notes

Supplemental application notes on the following topics are available by contacting J-KEM.

Application Note	Subject
AN2	Changing the controllers thermocouple type.
AN3	Changing the heating outlet into a cooling outlet.
AN4	Using the controller for unattended fractional distillations.
AN5	Using the controller with inductive (motors, valves) loads.

4.1 Theory of How the Controller Works - Simply. For the purpose of explaining how the controller works, the example of a solution heated with a heating mantle is used. The principles are the same for all heater types.

Figure 2
The controller, the heating mantle and the thermocouple form a closed loop feedback system. If the process temperature is below the set point, the controller turns the heating mantle on and then monitors the temperature rise of the solution. If a small rise results (indicating a large volume is being heated) the controller sets internal parameters appropriate for heating large volumes. If a large rise in temperature results, the controller responds by loading a set of parameters appropriate for heating small volumes. For the controller to work ideally, information needs to travel instantaneously around the feedback loop. That means that any power the controller applies to the heating mantle must reflect itself in an instantaneous temperature rise of the solution and the thermocouple. Unfortunately, this type of instantaneous heat transfer from the heating mantle to the solution to the thermocouple just doesn't occur. The delay time between when power is applied to the heating mantle and when the solution rises in temperature; and also the converse, when power is removed from the heating mantle and the solution temperature stops rising is the source of most controller errors. The reason for this can be seen in a simple example.

Imagine heating a gallon of water to $80^{\circ} \mathrm{C}$ in a 5 quart pan on an electric range. Placing the pan on the range and turning the heat to 'high' you'd observe a delay in heating while the range coil warmed-up. This delay might be a little annoying, but it's really no problem. The real problem comes as the water temperature approaches $80^{\circ} \mathrm{C}$. If you turned the range off just as the water reached $80^{\circ} \mathrm{C}$ the temperature would continue to rise - even though all power had been disconnected - until the range coil cooled down. This problem of overshooting the set point during initial warm-up is the major difficulty with process controllers. Overshooting the set point is minimized in two ways by your J-KEM controller - but first let's finish the range analogy. If you had turned the range off just as the water temperature reached $80^{\circ} \mathrm{C}$, the final temperature probably would not exceed $82^{\circ} \mathrm{C}$ by the time the range coil cooled down, because the volume of water is so large. In most situations a $2^{\circ} \mathrm{C}$ overshoot is acceptable. But what if you were heating 3 tablespoons (45 mL) of water and turned the stove off just as the temperature reached $80^{\circ} \mathrm{C}$. In this case, the final temperature would probably approach $100^{\circ} \mathrm{C}$ before the range cooled down. A $20^{\circ} \mathrm{C}$ overshoot is no longer acceptable. Unfortunately, this is the situation in most research heating applications. That is, small volumes ($<2 \mathrm{~L}$) heated by very high efficiency heating mantles that contain large amounts of heat even after the power is turned off.
Your controller handles the problem of 'latent heat' in the heating mantle in two ways:

1) The controller measures the rate of temperature rise during the initial stages of heating. It then uses this information to determine the temperature at which heating should be stopped to avoid exceeding the set point. Using the range analogy, this might mean turning the power off when the water temperature reached $60^{\circ} \mathrm{C}$ and allowing the latent heat of the burner to raise the water temperature from 60 to $80^{\circ} \mathrm{C}$. This calculation is done by the controller and is independent of the operator. The next feature of the controller is directly under operator control and has a major impact on the amount of overshoot on initial warm-up.
2) Again referring to the range analogy, you'd obtain better control when heating small volumes if the range had more than two power settings; Off and High. J-KEM's patented power reduction circuit (8) serves just this function. It allows the researcher to reduce the power of the controller depending on the amount of heat needed. This circuit can be thought of as determining whether the heating power is Very low (1-10 mL), Low (10100 mL), Intermediate ($50-500 \mathrm{~mL}$), Medium ($300 \mathrm{~mL}-2 \mathrm{~L}$), or High (> 2 L). The proper power setting becomes instinctive after you've used your controller for awhile. For additional information see Section 3.5.

4．2 Controlling the Heating Mantle Temperature Directly．In a normal heating setup，the thermocouple is placed in the solution being heated．The controller then regulates the temperature of the solution directly．The thermocouple could alternately be placed between the heating mantle and the flask so that the controller regulates the temperature of the heating mantle directly，which indirectly regulates the temperature of the solution． Advantages to this method include：

1．The temperature of any volume（microliters to liters）can be controlled．
2．Temperature control is independent of the properties of the material being heated （e．g．，viscosity，solid，liquid，etc．）．

3．Air and water sensitive reactions can be more effectively sealed from the atmosphere．
The temperature controller must be programmed for use with an external thermocouple before this procedure is used（see following procedure）．The following step－by－step procedure programs the controller to regulate heating mantle temperature．If you switch back and use the controller with the thermocouple in solution，Procedure 1 in Section 2.3 will program the controller for heating mantles．For all other heaters，see tuning instructions in Section 2.

After the controller is reprogrammed，place a fine gage wire thermocouple（ $\approx 1 / 3$ the size of kite string；available from J－KEM）in the bottom third of the heating mantle and fit the flask snugly on top so that the thermocouple is in intimate contact with the heating mantle．Set the power reduction circuit to the power level shown in the table at the right．Turn the controller on and enter the set point．

Heating Mantle Size	Power Level
$5 \& 10 \mathrm{ml}$	$1-10 \mathrm{ml}$
25 ml	$10-100 \mathrm{ml}$
$50 \mathrm{ml}-22 \mathrm{~L}$	$50-500 \mathrm{ml}$

For temperatures over $\approx 120^{\circ} \mathrm{C}$ ， the next higher power level may be necessary

Procedure to Load Tuning Parameters for External Thermocouples．

1.	Press and hold in both the \uparrow and \downarrow keys on the front of the temperature meter until the word＂tunE＂appears in the display，then release both keys．
2.	Press the \downarrow key once and the word＂bAnd＂will appear in the display．While holding in the＂＊＇key press the \uparrow or \downarrow key until the value ＂ 5 ＂appears in the display，then release all keys．
3.	Press the \downarrow key once and the word＂int．t＂will appear in the display．While holding in the＂＊＇key press the 个 or \downarrow key until the value ＂ 2 ＂appears in the display，then release all keys．
4.	Press the \downarrow key once and the word＂dEr．t＂will appear in the display．While holding in the＂＊＇key press the \uparrow or \downarrow key until the value ＂ $5 "$ appears in the display，then release all keys．
5.	Press the \downarrow key once and the word＂dAC＂will appear in the display．While holding in the＂＊＇key press the 个 or \downarrow key until the value $" 5.0 " ~ a p p e a r s ~ i n ~ t h e ~ d i s p l a y, ~ t h e n ~ r e l e a s e ~ a l l ~ k e y s . ~$
6.	Press the \downarrow key once and the word＂CyC．t＂will appear in the display．While holding in the＂＊＇key press the 个 or \downarrow key until the value ＂ $5.0 "$ appears in the display，then release all keys．
7.	Press and hold in both the 个 and \downarrow keys until the temperature appears in the display，then release both keys．

To return to using thermocouples in solution，perform Procedure 1 in Section 2．3．
4.3 Automatic Storage of Min/Max Temperatures The controller will automatically record the minimum and maximum temperatures of a process by following the procedure below. These temperatures are updated continuously after the routine is started and cleared by turning the controller off. This procedure must be started every time you want to record temperatures.

	Procedure to Start Temperature Logging
1.	Press and hold in both the \uparrow and \downarrow keys on the front of the temperature meter until the word "tunE" appears in the display, then release both keys.
2.	Press the \uparrow key once and the word "LEUL" appears in the display. While holding in the '*' key press the \downarrow key until the value " 3 " appears in the display, then release all keys.
3.	Press the \downarrow key until the word "ChEy" appears in the display. While holding in the '*' key press the \downarrow key until "on" appears in the display, then release all keys.
4.	Hold in both the \uparrow and \downarrow keys until the temperature appears in the display, then release both keys. Automatic temperature logging is now on and will remain on until the controller is turned off or logging is turned off manually by repeating this procedure except in Step 3 pressing the \downarrow key until the word "off" appears.
	Procedure to Read Minimum and Maximum Temperatures
1.	Press and hold in both the \uparrow and \downarrow keys on the front of the temperature meter until the word "tunE" appears in the display, then release both keys.
2.	Press the \uparrow key once and the word "LEUL" appears in the display. While holding in the '*' key press the \downarrow key until the value " 3 " appears in the display, then release all keys.
3.	Press the \downarrow key until the word "rEAd" appears in the display. The "rEAd" screen displays 3 parameters. 1. Variance (the difference between the highest and lowest logged temperatures) Hold in the '*' key and the display will alternate between "UAr" and number of degrees of variance. 2. High Temperature (the highest temperature since the logging option was turned on). While holding in the '*' key press the \downarrow key once and the display will alternate between "hi 0 " and the highest recorded temperature. 3. Low Temperature. While holding in the "*' key press the \downarrow key once and the display will alternate between "Lo O" and the lowest recorded temperature. The High and Lo temperatures can be examined as often as you like since updating and monitoring continues until the monitor is stopped by turning the controller off.
4.	Press and hold in both the \uparrow and \downarrow keys until the temperature appears in the display, then release both keys.

4.4. How to Set Up a Reaction with J-KEM Scientific's Digital Temperature Controller

This application note shows how to set up a typical heated reaction using J-KEM Scientific's digital temperature controller. For this example, the Model Gemini controller is used, but the application note applies equally well to all J-KEM temperature controller models. If you have questions about specific models of temperature controllers, or any safety related question, please feel free to contact J-KEM Scientific. This application note does not supercede any information in the Controllers actual User manual. The User manual for each model is always the reference for that model.

The Model Gemini is a dual channel controller that allows two independent reactions to be run on the same controller, one reaction on Channel 1 and the second on Channel 2. In this example, we will only use channel 1.

Channel 1 has a 100 hour to turn heating On (Off) at a user set time.

Channel 2 does not have a timer

Gemini Dual Channel Temperature Controller

Thermocouple extension cord

Thermocouples - Thermocouples are color coded. When the plastic connector on the end of the thermocouple is blue, it is a type T thermocouple, when it is yellow it is a type K , and when it is black it is a type J . The color of the thermocouple, the thermocouple extension cord, and the thermocouple receptacle on the face of the controller must all be the same color (i.e., thermocouple type) or the controller will not read the correct temperature. Thermocouples are available in many different styles. As long as the thermocouple has the same color connector as the connector on the controller, they are 100\% compatible.

When a thermocouple is placed in solution, often it is desirable to bend the thermocouple slightly so that more of the tip extends into the solution. It does not hurt a thermocouple to be bent slightly. The temperature sensitive portion of a thermocouple is the first $1 / 4$ " of the tip. It's good for the first $1 / 2$ " to be is solution, but the first $1 / 4$ " must be in solution to read the temperature correctly.

Heaters - Your J-KEM controller works with virtually any 120 volt (or 230 volt heaters outside of the USA) heater, including any size heating mantle, 120 vac oil baths, hot plates, ovens, and many other style heaters. If you have questions about the compatibility of specific heaters, please contact j -KEM.

Classes of J-KEM Scientific Temperature Controllers

J-KEM's 200-Series, Apollo, and Gemini controllers are compatible with any size heating mantle from 5 ml to 50 liter, and any 120 Vac oil bath (do not use with oil baths rated less than 120 Vac).

J-KEM's 150-Series economy controllers are compatible with 500 ml heating mantles and larger, and 120 Vac oil baths (do not use with oil baths rated less than 120 Vac).

J-KEM's 230 Vac controllers are compatible with any 230 Vac heating mantle 100 ml and larger. They are not compatible with any size oil bath.

Shown is a typical set up for a solution phase reaction.

1. Place the reaction flask in the appropriate size heating mantle., then plug the power cord from the mantle directly into the power outlet of the temperature controller.
2. Place a stirring bar inside of the flask, in the solution. Place the flask on a magnetic stirrer and stir the reaction for good heat transfer.
3. Place a thermocouple in solution and make sure that at least the first $1 / 4 "\left(1 / 2^{\prime \prime}\right.$ is better $)$ is covered by the fluid in the reaction flask.

4. Enter the temperature that you want to heat the reaction to (i.e., the Setpoint) into the digital meter.

To enter the setpoint temperature (i.e., the temperature to heat to) into the controller: 1. Hold in the Star button on the face of the digital meter.
2. While holding in the Star button, press the Up arrow to increase, and the Down arrow to
 decrease the setpoint temperature.
When the desired setpoint temperature is showing in the display, release the star button to load the setpoint. When no buttons are pressed on the controller, the controller shows the temperature sensed by the thermocouple. When the Star button is pressed, the setpoint appears as a blinking number.
5. Set the correct Power Control Level. Your J-KEM controller has a built in Power Control Computer PCC) that precisely regulates power to the heater. For the computer to work correctly, it must know the volume of solution that is being heated. It's important to understand that the PCC is set to the Volume of solution being heated, not the size of the heater or the size of the flask.

For a detailed explanation of the Power Control Computer, see Section Two in the controller's User manual.

Appendix

I. Safety Considerations and Accurate Temperature Control

Abstract

For safety critical and non-typical organic reactions (especially polymeric reactions) or for use with heaters other than heating mantles the user must either 1) monitor the reaction closely to verify the tuning parameters are appropriate for the current application, or 2) autotune the controller for the application. For any safety critical or high value reaction, call J-KEM to discuss your application with an engineer prior to beginning.

Your J-KEM controller is capable of regulating virtually any application to $\pm 0.1^{\circ} \mathrm{C}$ if the controller is tuned to the application being heated. Since it's possible that the tuning parameters are not set correctly for your application, the user must monitor a new reaction to verify the controllers operation. A short primmer on tuning is presented below, a more detailed explanation is presented in Sections 2.1 and 4.1.

Tuning is the process that matches the control characteristics of the controller to the heating characteristics of the process being controlled. The controller uses a PID (Proportional, Integral, Derivative) algorithm to regulate heating. Each of the terms in the PID equation has a constant that scales the equation to the process being heating. These constants (plus two other related terms) are collectively known as the 'tuning constants' and for the most part they are expressed in units of time, since they represent delay times, rate of heat transfer times, and rate of error accumulation. The relative value of each constant depends on the physical characteristics of the process being heated. For example, for the same amount of input power, the rate of heat transfer is twice as high for hexane as compared to water, since the coefficient of heat for hexane is 0.54 calories $/ \mathrm{g} /{ }^{\circ} \mathrm{C}$ and water is 1.0 calorie/gram $/{ }^{\circ} \mathrm{C}$. That means that 1000 watt-seconds of input power will raise the temperature of 10 g of hexane $44^{\circ} \mathrm{C}$ while the same amount of power causes a $24^{\circ} \mathrm{C}$ rise in water. In theory, the tuning constants needed to heat hexane are different from those to heat water. Fortunately, your J-KEM controller is self-adaptive and is able to adapt its heating characteristics for different solvents such as hexane and water. Even with the controller's self-adaptive algorithms, the tuning constants have to be reasonably close to a proper set or the controller will not produce stable temperature control (see Section 2.1).

When a controller is shipped, the default set of tuning constants loaded into the controller are those appropriate for heating typical organic reactions (i.e., small molecule chemistry in low boiling ($<160^{\circ} \mathrm{C}$) organic solvents) using heating mantles, since this is the most common application for J-KEM controllers. Since it's impossible for J-KEM to predict the application the controller will be used for, the researcher must be aware of the possibility that the tuning constants loaded into the controller may not be a set that results in stable temperature control. It's the researcher's responsibility to monitor the temperature regulation of a reaction. If you encounter a process that your J-KEM controller does not heat with stability, you have two resources.

Autotune Feature. Your controller has and autotune feature that when turned on (see Sections 2.1 \& 2.2) automatically determines the proper tuning constants for your application and then loads them into memory for future use.

J-KEM Technical Assistance. If you have an application you wish to discuss, call us, we're always anxious to help our users.

For an additional description of the PID algorithm and the concept of tuning, see Sections 2 and 4.1.

II. Resetting the Controller to Original Factory Settings

J-KEM manufactures the most technically advanced temperature controller available and should give you consistently flawless control. If you have difficulty with your controller, a good place to start to correct the problem is by loading the original factory settings. If you still have difficulty with your controller, our Engineering department will help you resolve the problem. The factory settings of a J-KEM controller are: $0.1^{\circ} \mathrm{C}$ resolution, PID control with tuning parameters for a heating mantle or oil bath, thermocouple type to match the thermocouple originally installed on the controller, high temperature alarm turned on, and a thermocouple offset entered at the time of original calibration.

1.	Press and hold in both the \uparrow and \downarrow keys on the front of the temperature meter until the word "tunE" appears in the display, then release both keys.
2.	Press the \uparrow key until "LEVL" appears in the display. Next, hold in the '*' key, then while holding in the '*' key press the \downarrow key until " 3 " appears in the display. Let go of all the keys.
3.	Press the \downarrow key until "rSEt" appears in the display. Next, hold in the '*' key, then while holding in the '*' key press the \downarrow key until the word "All" appears in the display. Let go of all the keys.
4.	Press and hold in both the \uparrow and \downarrow keys until the word "inPt" appears in the display, then release both keys. The value that needs to be entered depends of the type of thermocouple receptacle your controller was shipped with. Determine the thermocouple type below. Color of thermocouple receptacle (Fig 1; \# 7) Value to enter: Blue (type T) "tc \mathbf{i})" Yellow (type K) "tc !! " Black (type J) "tc -i" First hold in the '*' key, then while holding in the '*' key press the \downarrow key until the value from the table above appears in the display. Let go of all the keys. NOTE: Many of the patterns for this parameter look similar, be careful to select the exact pattern shown above.
5.	Press the key once and "unit" will appear in the display. Next, hold in the '*' key, then while holding in the '*' key press the \downarrow key until the value "o C" appears in the display,. Let go of all the keys.
6.	Press the \downarrow key once and the word "SP1.d" appears in the display. Next, hold in the '*' key, then while holding in the '*' key press the \downarrow key until the value "SSd" appears in the display. Let go of all the keys.
7.	Press in both the \uparrow and \downarrow keys until the temperature appears in the display (the word "PArk" also appears), then release both keys.
8.	Press and hold in both the \uparrow and \downarrow keys on the front of the temperature meter until the word "tunE" appears in the display, then release both keys.
9.	Press the \downarrow key once and the word "bAnd" will appear in the display. Next, hold in the '*' key, then while holding in the "*' key press the \downarrow key until the value " 15 " appears in the display. Let go of all the keys.
10.	Press the \downarrow key once and the word "int.t" will appear in the display. Next, hold in the '*' key, then while holding in the "*' key press the \downarrow key until the value " 5.0 " appears in the display. Let go of all the keys.
11.	Press the \downarrow key once and the word "dEr.t" will appear in the display. Next, hold in the '*' key, then while holding in the "*' key press the \downarrow key until the value " 15 " appears in the display. Let go of all the keys.
12.	Press the \downarrow key once and the word "dAC" will appear in the display. Next, hold in the '*' key, then while holding in the '*' key press the \downarrow key until the value " 4.0 " appears in the display. Let go of all the keys.
13.	Press the \downarrow key once and the word "CyC.t" will appear in the display. Next, hold in the '*' key, then while holding in the "*' key press the \downarrow key until the value " 14 " appears in the display. Let go of all the keys.
14.	Press the key until the word "SPrn" appears in the display. Next, hold in the '*' key, then while holding in the '*' key press the \uparrow or \downarrow key until the word "OFF" is displayed. Let go of all the keys.
15.	Press the \uparrow key until the word "LEVL" appears in the display.
16.	First hold in the '*' key, then while holding in the '*' key press the \downarrow key until " 2 " appears in the display. Let go of all the keys.
17.	Press the \uparrow key until "SP2.A" appears in the display. Next, hold in the '*' key, then while holding in the '*' key press the \uparrow key until the word "Dvhi" appears in the display. Let go of all the keys.
18.	Press the \downarrow key until "SP2.b" appears in the display. Next, hold in the '*' key, then while holding in the '*' key press the \uparrow or \downarrow key until the word "None" appears in the display. Let go of all the keys.
19.	Press the \downarrow key until "diSP" appears in the display. Next, hold in the '*' key, then while holding in the '*' key press the \uparrow or \downarrow key until the value " 0.10 " appears in the display. Let go of all the keys.
20.	Press the \downarrow key until "Lo.SC" appears in the display. Next, hold in the '*' key, then while holding in the '*' key hold in the \uparrow key until the number in the display stops changing (this will be " 0 " or "- 50 " or "-199.9" depending on thermocouple type). Let go of all the keys.

21.	Press the \uparrow key until the word "LEVL" appears in the display.
22.	First hold in the '*' key, then while holding in the '*' key press the \downarrow key until " 3 " appears in the display. Let go of all the keys.
23.	Press the \uparrow key until "SPAn" appears in the display. Next, hold in the '*' key, then while holding in the '*' key press the $\boldsymbol{\uparrow}$ or \downarrow key until the value \qquad appears in the display. Let go of all the keys.
24.	Press the \uparrow key until "ZEro" appears in the display. Next, hold in the '*' key, then while holding in the '*' key press the $\boldsymbol{\uparrow}$ or \downarrow key until the value \qquad appears in the display. Let go of all the keys.
25.	Press the \uparrow key until the word "LEVL" appears in the display.
26.	First hold in the '*' key, then while holding in the '*' key press the \uparrow key until " 1 " appears in the display. Let go of all the keys.
27.	Press the \downarrow key until "SEt.2" appears in the display. Next, hold in the '*' key, then while holding in the '*' key press the \uparrow or \downarrow keys until the value 5.0 is entered.
28.	Press the \downarrow key until "Bnd.2" appears in the display. Next, hold in the '*' key, then while holding in the '*' key press the \uparrow key until the value 0.1 is entered. If your controller does not have a USB port on the back, skip to step 33.
29.	Press the \uparrow key until the word "LEVL" appears in the display.
30.	First hold in the '*' key, then while holding in the '*' key press the \uparrow key until "C" appears in the display. Let go of all the keys.
31.	Press the \downarrow key and "Addr" will appear in the display. Next, hold in the '*' key, then while holding in the '*' key press the \uparrow or \downarrow key until the value " 1 " appears in the display. Let go of all the keys.
32.	Press the \downarrow key and "bAud" will appear in the display. Next, hold in the '*' key, then while holding in the '*' key press the \uparrow or \downarrow key until the value " 9600 " appears in the display. Let go of all the keys.
33.	Press the \downarrow key and "dAtA" will appear in the display. Next, hold in the '*' key, then while holding in the '*' key press the \uparrow or \downarrow key until the value " 18 n 1 " appears in the display. Let go of all the keys.
34.	Press and hold in both the \downarrow and \uparrow keys until the temperature appears in the display, then release both keys. The word "PArk" in the display will go away when a set point is entered.

[^0]: The controller can be set back to PID control by following Procedure 1 in Section 2.3. To completely reset the controller to original factory settings, follow the procedure in the Appendix, Section II.

